Data time series adalah tentang deret waktu. Bagi anda yang suka bola, tentunya tidak asing dengan istilah statistik bola. Isinya tentang pertandingan klub baik klub besar maupun klub kecil. Statistik bola tersebut biasanya digunakan untuk memprediksi kemenangan klub di pertandingan sebelumnya. Misal akan ada pertandingan antara Barcelona melawan Real Sociedad. Statistik atau history menunjukkan bahwa Barcelona selalu menang melawan Real Sociedad baik dalam kandang sendiri atau pun tandang. Tidak heran jika banyak yang menjagokan kemenangan Barcelona dalam pertandingan ini. Berbeda jika terjadi pertandingan antara Barcelona melawan Real Madrid, mungkin peluang penonton sepakbola sudah terbagi sama kuat antara Barcelona dan Real Madrid. Hal ini dikarenakan kedua tim sama sama kuat dan memiliki history yang seimbang.
Cerita diatas merupakan sebuah fenomena sederhana jika history atau data dahulu bisa dijadikan dasar untuk kita menentukan apa yang akan terjadi di pertandingan mendatang atau bisa dikatakan apa yang akan terjadi di masa mendatang. Cerita sederhana namun banyak dirasakan oleh pecinta sepakbola untuk membantu bagaimana data bisa melancarkan kita untuk menentukan sikap dimasa yang akan datang.
Dalam keseharian, ternyata tidak hanya dunia bola yang menggunakan data history atau time series untuk melakukan peramalan. Data BMKG misalnya, menentukan musim hujan pada bulan oktober sampai april. Hal ini selain ditentukan dari arah angin dan iklim permukaan laut, juga didasari oleh data time series 10 atau 20 tahun sebelumnya yang menghasilkan bahwa Bulan Oktober sampai April biasanya turun hujan.
Contoh lain adalah jumlah pengunjung dalam suatu mall. Ada jam jam tertentu dalam satu hari, mall itu selalu ramai, biasanya waktu pulang kantor hingga menjelang malam. Jika di telusuri secara lebih umum, bulan bulan tertentu seperti menjelang lebaran atau natal biasanya mall sangat ramai dan bahkan sampai out stock atau kehabisan barang.
Lalu, apa masalahnya?
Peramalan yang dihasilkan oleh time series ini biasanya juga mempengaruhi keputusan individu atau lembaga dan instansi. Misalnya pada contoh musim hujan yag terjadi pada bulan oktober – april. Pemerintah DKI jakarta tentu meski harus membenahi sungai sebelum waktu tersebut agar banjir bisa dikurangi atau dihilangkan. Petani juga menentukan kapan waktu tanam saat mulai musim hujan. Kementerian pertanian mengeluarkan aplikasi kalender tanam yang dapat memandu para petani melakukan olah lahan dan komoditas berdasarkan prediksi curah hujan dan iklim serta kondisi lahan.
Contoh kedua tentang mall. Perusahaan produksi harus memperhitungkan berapa yang disupply di bulan sebelum hari raya, berapa yang harus diproduksi menjelang hari raya, dan berapa cadangan barang yang harus disediakan sebelum hari raya tiba. Semua itu berdasarkan angka perkiraan time series yang digunakan oleh perusahaan tersebut agar keuntungan yang diperoleh bisa maksimal atau perusahaan tidak mengalami kehilangan pembelian akibat kekurangan barang di mall tersebut. Jika perusahaan kehilangan pembelian akibat out stock, menjadi fatal akibatnya karena konsumen bisa beralih ke produk kompetitor dan berpeluang akan kehilangan konsumen jika ternyata konsumen tersebut menyukai produk kompetitor.
Saya sangat hapal problem supply chain ini karena pernah bekerja di perusahaan bagian supply chain dan perencanaan produksi.
Mengingat pentingnya perencanaan dan peramalan data di masa mendatang, maka salah satu ilmu kuantitatif ini, peramalan bisnis, menjadi salah satu mata kuliah yang harus dikuasai oleh calon pebisnis dan pengambil keputusan.
Pengertian Time Series
Time series atau data deret waktu adalah data yang dikumpulkan dan diamati atas rentang waktu tertentu. Terdapat empat unsur dalam data deret waktu; yakni trend, musiman, siklus, dan random atau komponen acak. Pola trend biasanya terlihat dari grafik yang naik atau turun dalam waktu yang panjang (10 tahun, 20 tahun, 15 tahun, 5 tahun). Sedangkan musiman biasanya data naik dan turun dalam jangka yang pendek misalnya satu tahun. Hal ini yang membedakan dengan siklus, siklus juga menunjukkan pola yang naik dan turun namun dalam jangka waktu yang lama. Komponen terakhir merupakan random yakni variable lain yang tidak dapat dijelaskan oleh ketiga komponen sebelumnya (acak).
Tehnik Time Series
Tehnik Time series merupakan data history yang digunakan untuk meramalkan data berikutnya. Hampir sama dengan regresi, Y merupakan data history dan X adalah data periode atau time itu sendiri, bisa bernilai 1 untuk data yang paling awal, dan bernilai 2 untuk data berikutnya dan seterusnya. Model yang dihasilkan akan digunakan untuk meramalkan nilai Y berikutnya. Lalu apakah menggunakan r-squared? Jawabnnya bisa, meskipun time series dalam pengukuran akurasinya tidak menggunakan R-squared, namun karena time series juga termasuk model persamaan, seharusnya R-squared juga bisa digunakan untuk menilai apakah persamaan yang dihasilkan baik atau tidak.
Berbagai macam tehnik time series adalah sebagai berikut:
Naïve
Tehnik naïve merupakan tehnik time series yang paling sederhana. Deskripsi singkat tentang tehnik naïve ini adalah kita memprediksi dengan data satu periode sebelumnya. Misalnya penjualan bulan maret adalah 20 unit, maka kita memprediksi penjualan april juga sebesar 20 unit. Atau dalam hitungan tahun, jika penjualan tahun 2010 sebesar 200 unit, maka kita memprediksi penjualan tahun 2011 juga sebanyak 200 unit.
Dalam persamaan dapat ditulis sebagai berikut:
Y prediksi = Y t-1
Moving average
Tehnik moving average (MA) merupakan pengembangan dari tehnik naïve. Jika naïve hanya menggunakan data 1 periode sebelumnya untuk menentukan atau meramalkan data kedepan, maka MA menggunakan beberapa data periode kedepan dan kemudian dirata-ratakan untuk menentukan data berikutnya. Jumlah data yang digunakan biasanya disebut ordo. Dikatakan moving average atau rataan yang bergerak karena average yang digunakan seolah bergerak tergantung data yang ingin diprediksi. Bingung? Perhatikan contoh ilustrasi berikut:
Data:
1 = A
2 = B
3 = C
4 = D
5 = E
Untuk menentukan data ke 6, misal kita menggunakan MA (2), atau disebut MA ordo 2, maka:
Ypred4 = average(B,C)
Ypred5 = average(C,D)
Ypred6 = average(D,E)
Ypred7 =average(E,F)
Perhatikan bahwa rataannya bergerak mengikuti Y prediksi. Jika ordo yang digunakan 3, maka jumlah data yang dirata-rata adalah 3 data sebelum Y prediksi. Paham?
Tehnik MA selanjutnya dapat dikembangkan menjadi tehnik double MA. Yakni hasil MA dari rataan bergerak nilai aktualnya dilakukan MA kembali atau melakukan rataan bergerak sebanyak dua kali.
Tehnik Trend
Tehnik trend merupakan tehnik yang umum digunakan pada analisis peramalan data kuantitatif. Pada dasarnya kita mencari pola trend pada data yang kita miliki; misalnya linear, kuadratic, S kurve, atau exponential; yang selanjutnya kita gunakan model tersebut untuk memperkirakan data selanjutnya.
Model linear : Ypred = a + bT + e, Model kuadratic: Ypred = a + bT2 + cT + e, Model S kurve : Ypred = L/(1+exp(a+b(T) + e), Model exponential: Ypred = a + eb.T
Anda tidak perlu kuatir dengan banyaknya pilihan yang digunakan untuk melakukan tehnik data peramalan karena dapat menggunakan software untuk membantu pemrosesan data.
Tehnik mana yang paling baik?
Kita bisa mengatakan sebuah model peramalan paling baik jika model tersebut memiliki kriteria error yang paling kecil. Jadi, model mendapatkan Ypred, yang kemudian dibandingkan dengan Yact, kemudian dihitung nilai errornya. Beberapa tehnik perhitungan nilai errornya adalah
Mean Absolut Error (MAE) atau Mean Absolut Deviation (MAD)
Berdasarkan namanya, merupakan nilai rata-rata dari nilai absolut error. Atau dapat ditulis dengan persamaan
Mean Squared Error (MSE) atau Mean Squared Deviation (MSD)
Merupakan nilai rata-rata dari kuadrat errornya, atau dapat ditulis dengan persamaan:
Mean Percentage error (MAPE)
Merupakan rata-rata dari persentase error terhadap nilai aktual
Langsung saja, kita lanjutkan dengan praktek disoftware. Saya biasa menganalisis trend dengan menggunakan minitab. Bukan promosi, namun saya rasa aplikasi ini lebih ringan untuk menentukan model trend yang ingin kita gunakan.
Saya memiliki data produksi jagung di 11 tahun beruntun
Kemudian klik stat – time series – trend analysis
Masukkan variabel jagung kemudian pilih model type. Kali ini saya gunakan linear terlebih dahulu pada model type. Anda bisa mengatur output yang akan keluar di minitab seperti grafik pada tombol graphs. Namun biasanya tidak saya lakukan sebelum saya tau model mana yang paling tepat. Kemudian klik OK
Maka muncullah sebuah grafik dengan informasi garis model linear dan Yact. Berikut data MSD, MAPE dan MAD.
Saya lakukan hal yang serupa diatas untuk mendapatkan model trend quadratic, exponential growth, dan S-curve. Hasil yang saya peroleh berturut-turut adalah sebagai berikut:
Untuk s-curve ternyata minitab langsung memberitahukan bahwa data diatas tidak cocok untuk model S-kurve
Data MSD MAD dan MAPE kemudian saya satukan dan saya tentukan mana nilai yang paling rendah.
Dari model tersebut, terlihat bahwa model quadratic adalah model yang paling baik dari tehnik trend untuk menggambarkan nilai produksi jagung. Lalu bagaimana jika kita coba moving average? Kita bisa lakukan perbandingan kembali.
Masih di minitab, klik stat – time series – moving average
Isi variabelnya, MA length merupakan ordo dari MA, kita isikan nilai 3 misalnya. Anda bisa mencoba coba mengisi 2 atau nilai lainnya. Kali ini saya coba langsung dengan nilai 3, karena artikel ini sudah mulai panjang. Minitab juga memberi pilihan moving average dalam bentuk center MA atau tidak. Penjelasan yang saya gunakan di bagian atas adalah tidak menggunakan center MA. Center MA adalah tehnik MA dengan nilai Ypred diperoleh dengan cara merata-ratakan dengan posisi Ypred ditengah. Artinya jika MA (3) berarti rata rata dari Yt-1, Yt, dan Yt+2. Pada latihan ini saya tidak menggunakan Center MA. Klik OK
Hasil yang saya peroleh
Kemudian nilai errornya saya bandingkan dengan model – model sebelumnya
Ternyata masih trend quadratic yang pantas untuk melakukan peramalan data.
Maka kesimpulannya kita akan menggunakan model quadratic untuk meramalkan data. Bagaimana caranya, kita klik stat – time series – trend analisis. Kemudian kita pilih model quadratic. Kitaklik generate forecast. Kita isi number forecastnya 5, mulai dari data ke 11 (ini contoh, anda bisa mengisinya sesuai tujuan penelitian). Kemudian todak lupa kita mau menentukan nilai ypred atau di minitab dikenal istilah Fits dan residualnya untuk nanti menghitung R squared. Klik storage dan centang fits, forecast dan residualnya. Klik ok klik Ok
Hasil yang diperoleh adalah seperti ini:
Terlihat bahwa peramalan untuk data ke 12 sampai ke 16. Pada kolom C4 atau di session minitab.
R squared
Seperti yang saya janjikan sebelumnya, kita juga bisa mencari R-squared untuk mengetahui seberapa baik model yang kita gunakan seperti kita menilai model regresi.
Rumus R-squared adalah : 1 – (JKS/JKT)
JKS atau jumlah kuadrat sisaan = (Yact – Ypred)2
JKT atau jumlah kuadrat total = (Yact – Ymean)2,
Ymean merupakan nilai rata –rata dari Yact
Saya proses nilai Fits dan residu yang berasal dari minitab tadi, saya pindahkan ke excell dan kita hitung nilai R-squarednya. Saya peroleh hasil sebagai berikut:
Hasilnya r-squared adalah 76%, artinya model kuadratic mampu menjelaskan nilai Y sebesar 76%, sedangkan sisanya adalah nilai error. Kategori model ini sudah dapat dikatakan baik untuk digunakan meramalkan data berikutnya.
Masih ada beberapa tehnik peramalan lainnya, pada awalnya saya ingin jelaskan semua dalam satu artikel, namun tampaknya tidak memungkinkan. Semoga saya bisa menulis artikel berikutnya tentang smoothing, dan Arima Sarima, juga masih merupakan tehnik peramalan data kuantitatif
Terima kasih sudah berkunjung
update:
Arima dan Sarima telah saya bahas di : ARIMA SARIMA: Si Kembar dari Time Series
video dibawah ini merupakan salah satu penggunaan analisis time series yang aplikatif:
selamat pagi pak, izin bertanya jika melakukan peramalan dengan 2 metode masing-masing akan mengahasilkan nilai prediksi, kemudian apakah dari nilai prediksi tersebut dapat dilakukan perhitungan atau ada metodenya untuk mengetahui selesih perbedaan antar prediksi tersebut pak?
singkatnya misal, jika untuk mengetahui keakuratan dpaat menggunkan mape karena nilai (aktual – pred)/n. tapi bagaimana jika ingin mengetahui selisih antar dua nilai prediksi yang berbeda? terimakasih
sependek yang saya pahami belum ada pembahasan tentang selisih dari dua nilai prediksi. yang ada membandingkan nilai mape dari kedua peramalan tersebut. namun jika ada dasar yang kuat mengapa harus dihitung selisih antara dua nilai prediksi, boleh saja. Analisis ini masuk kedalam deskriptif statistik yang menerangkan tentang mean dari selisih, std deviasi, varian, disertai dengan bar diagram. bila perlu ada uji statistik bahwa selisihnya secara nyata lebih besar dari nilai A misalnya. Terima kasih
Selamat malam Pak, izin bertanya, kalau trend menggunakan metode kuadrat terkecil atau least square. Untuk keunggulan dari penggunaan data 3 tahun di bandingkan 5 tahun apa ya pak?
Least square itu sebenarnya trend linear. Sama dengan regresi linear sederhana yang menggunakan least square dengan satu variabel independen. Jika ditanya kelebihan data 5 tahun dibanding 3 tahun, tentu data 5 tahun akan memiliki data yang lebih banyak, sehingga hasil koefisiennya akan memiliki error yang lebih kecil. Itupun jika asumsk linearitasnya terpenuhi. Terima kasih.
Malam pak, saya izin bertanya penelitian saya menggunakan 2 variabel untuk di ramal. Yang pertama, variabel volume ekspor dan yang kedua variabel harga. Akan tetapi setelah saya cari, variabel volume ekspor hanya menyediakan data tahunan. sementara variabel harga hanya menyediakan data bulanan. Apakah tidak apa-apa pak jika seperti ini? Saya telah mencari ke berbagai situs seperti un comtrade, itc, dan beberapa website uni eropa utk melihat data ekspor bulanan tetapi tidak ketemu. Komoditi yang saya teliti tidak memiliki kelengkapan data, berbeda dengan CPO. Terimakasih atas bantuannya pak
Jika kedua data itu terpisah analisisnya maka tidak masalah. Satu bahas tahunam satu bahas bulanan. Tapi jika perlu dibandingkan dengan satuan waktu yang sama, masalah akan timbul.
Jika tidak tersedia data kedalam satuan yang kecil, bulanan. Maka satu satunya cara menyamakan satuan waktu dalam satuan yang lebih besar, tahunan.
Karna jika dipaksa tahunan ke bulan, kita tidak tau informasi fluktuasi bulanan sepanjang tahun. Alhasil nanti akan flat dan itu bukan data yang bagus. Terima kasih
Sebelumnya saya ingin berterimakasih atas jawabannya pak. Izin bertanya lagi pak, apakah data bulanan tersebut bisa saya rata-ratakan untuk jadi data tahunan? terimakasih pak
Izin bertanya pak, terkait data time series untuk forecasting dengan metode ARIMA dan Exponential Smoothing. Untuk data nya sendiri terdiri dari data penjualan harian dari pertengahan tahun 2020 sampai 2023 yang akan diubah menjadi data per 2 minggu (di sum).
Jika data nya non stationer, apakah cocok saja diterapkan di single exponential smoothing ya pak? Terima kasih sebelumnya
Exponential smoothin klo dilihat memang analisis untuk trend. Sehingga justru akan cocok pada data yang tidak stasioner karna mengandung trend.
Terima kasih
Berarti untuk single exponential bisa ya pak? Soalnya saya lihat di beberapa sumber, untuk yg single atau brown ini cocoknya lebih ke data stationer. Jadi, saya takutnya hasil peramalan tidak akan bagus. Pak, maaf ada pertanyaan lain. Jika data diatas 3 tahun (diubah ke per 2 minggu) apakah cukup untuk peramalan 3 atau 6 bulan ya? Atau apakah ada faktor lain yg menentukan hasil peramalan yang bagus spt apa dgn banyak data tertentu. Terima kasih banyak pak
exponential smoothing memang terbagi dua umumnya, single dan double. single cocok untuk data stasioner dll, seperti yang tertera pada umumnya sumber. tapi, sekali lagi hal yang membuktikan pola tsb cocok atau tidak adalah nilai MSEnya. untuk data minimal time series, silahkan baca artikel saya: https://agungbudisantoso.com/data-minimal-analisis-time-series/
terima kasih
Baik pak. Saya izin bertanya hal lain, apakah utk memastikan model ARIMA yang optimal, diperlukan uji menggunakan data training & data testing setelah menentukan parameternya? Atau ini optional saja?
selamat malam pak. ijin bertanya, saya menggunakan metode arima dengan menggunakan data penjualan tahunan (2018-2021). untuk meramal tahun berikutnya apakah bisa menggunakan th 2022 ?
Selamat malam. Bisa, cara yang paling sederhana adalah menggunakan metode moving average. Peramalan penjualan tahun 2022 ditentukan dari rata-rata penjualan 2018-2021. Ini disebut dengan moving average ordo 4. Terima kasih
izin bertanya,
1. jika hasil forecasting konstan di angka 200/bulan (contoh), yg mendasari atau penjelasan yang membuat hasil peramalan konstan apa ya pak terimakasih.
2. apakah ada artikel mengenai cara membaca persaan grafik s-curve, eksponensial, dan quadratik
terimakasih
selamat malam pak budi, saya ingin menanyakan mengenai peramalan jumlah penumpang. data yang saya miliki sekitar 7bulan (dari awal operasi). saya mau melakukan peramalan jangka pendek menggunakan metode time series trend. seperti yg saya baca diatas, saya berniat menggunakan software minitab. bagaimana menurut bapak, terimakasih
Data 7 bulan ini maksudnya datanya hanya 7 (bulanan), atau 90an jika data harian?
Jika hanya data bulanan sepertinya belum cukup. Terima kasih.
yang dimaksud data 7 bulan adalah data dari awal operasi yaitu bulan september 2021 – april 2022. kalau tidak bisa meramalkan dengan data perbulan (sep, ok, nov-april), apakah bisa menggunakan data perharinya saja. dan saran untuk metodenya kalau tidak bisa trend, apakah ada saran pak? terimakasih banyak pak
Saya rasa data harian akan lebih bercerita banyak dibanding data bulanan ya… Karena diharapkan akan memunculkan siklus, tren, dan musiman selama satu tahun.
Untuk yang metode random/irregular itu biasanya seperti apa cara perhitungannya pak, mohon penjelasannya
ada metode lain disebut Arch dan Garch. saya belum jelaskan di blog ini. terima kasih
Selamat malam pak dan izin bertanya. Untuk data yang memiliki pola data acak, metode apa yang sebaiknya digunakan? terima kasih pak
Mau bertanya pak , Jika saya punya data jumlah pencari kerja january s/d agustus yang mana saya hanya punya beberapa bulan saja apakah bisa digunakan untuk meramal di bulan – bulan selanjutnya ?
sebaiknya baca artikel saya yang berjudul minimal data time series. terima kasih
Izin bertanya Pak, saya sedang penelitian skripsi dan ingin meramalkan volume impor kentang untuk 5 tahun kedepan. Saya ingin menanyakan beberapa hal Pak:
1. Saya punya data bulanan dari tahun 2012-2021(hanya sampai Juni) dengan jumlah data bulanan sebanyak 114. Data bulanan tersebut ada beberapa bulan yang angkanya 0 seperti pada bulan januari, februari, maret, juli, dan agustus tetapi tahunnya berbeda-beda. Lalu, saya punya data tahunan dari tahun 1989-2020 dengan jumlah data tahunan sebanyak 32 tahun. Sedangkan data tahunan tidak memiliki angka 0 dan ada kecendrungan memiliki pola trend setelah saya lihat plot datanya. Manakah yg lebih baik menggunakan data bulanan atau data tahunan pak?
2. – Jika saya menggunakan data bulanan sebanyak 114 dan meramal menggunakan Moving Average kira-kira berapa ordo dan length yang sebaiknya digunakan?
– Jika saya menggunakan data tahunan sebanyak 32 tahun dan meramal menggunakan Moving Average kira-kira berapa ordo dan length yang sebaiknya digunakan?
3. Jika pada Pola ACF ada lag yang memotong lebih dari satu lag. Apakah akan menandakan data kita bermasalah?
4. Bisakah melihat pola data sudah stasioner, mengandung unsur trend, musiman, atau siklus dari pola ACF nya? dengan melihat angka (Store ACF, Store t-statistic, Store L-ujung Box Qstatistic) ?
5. Apakah saya boleh konsultasi terkait data penelitian skripsi saya lewat whatsaap Pak? Jika boleh saya ingin meminta no whatsapp Bapak ya
Sebelumnya terima kasih banyak Pak
1. Bulanan
2. Moving average ataupun model lainnya ditentukan dengan nilai mse yang rendah. Jadi coba beberapa model dulu.
3.tidak. itu hanya menandakan ada hub dengan lag sebelumnya atau periode musimannya.
4. Bisa. Biasanya dilihat dari t statistic
5. Boleh, silahkan kunjungi menu layanan.
Terima kasih
Selamat siang, Pak Agung. Artikelnya sangat membantu sekali. Saya juga ingin bertanya. Kebetulan saya melakukan penelitian tentang peramalan penjualan di masa pandemi covid dengan data bulanan dari januari 2021-September 2022 (kemungkinan akan bertambah satu bulan). Berapa rentang waktu peramalan ke depan yang baik untuk ini? Terima kasih banyak pak
bisa tiga bulan sampai enam bulan mbak. lebih lengkap saya bahas di sini ya.. https://agungbudisantoso.com/data-minimal-analisis-time-series/
terima kasih
Hallo bapak Agung saya izin bertanya, jika data yang saya dapat 3 tahun yaitu data penjualan 2018-2020 apakah bisa meramalkan 3 tahun tersebut, dikarenakan ketika saya menggunakan data tersebut forcast yang dapat cuma 2 tahun.
Terimakasih pak
Silahkan baca ini ya mbak..
https://agungbudisantoso.com/data-minimal-analisis-time-series/
Terima kasih
Hallo bapak Agung saya izin bertanya, jika data yang saya dapat 3 tahun yaitu data penjualan 2018-2020 apakah bisa meramalkan 3 tahun tersebut, dikarenakan ketika saya menggunakan data tersebut forcast yang dapat cuma 2 tahun. Terimakasih pak
Assalamualaikum pak agung.
Saya mahasiswa semester akhir yang sedang menempuh skripsi dengan topik Forecasting jumlah pelanggan IndiHome menggunakan data 2 tahun kebelakang untuk memprediksi 1 tahun kedepan. Di penelitian saya ini rencananya melakukan forecasting menggunakan metode Time Series dengan membandingkan model Time Series mana yang cocok, yang ingin saya tanyakan :
Apakah dipenelitian saya ini harus membandingkan metode mana MSE yang lebih kecil atau boleh langsung saja menentukan metode time series tetapi membanding kan model mana yang MSE nya lebih kecil ?
Terimakasih pak
Wa alaikum salam.
Sebaiknya menggunakan beberaoa metode time series kemudian di pilih berdasarkan mse terkecil. Terima kasih
Baik pak
Terima kasih atas jawabannya pak, sangat membantu pak
Saya izin bertanya pak, apakah untuk data yang digunakan dalam analisis time series seasonal ini harus berupa data bulanan/tahunan? apakah data harian/mingguan tidak bisa digunakan? Terimakah banyak pak sebelumnya
boleh digunakan semuanya mbak. mau harian pun boleh, mingguan boleh, bulanan boleh, tahunan juga boleh.
Saya boleh minta no HP atau WA nya pak ? Ada yg mau saya tanyakan.
Terimakasih
Boleh..silahkan klik tautan ini https://wa.me/6282169636157 untuk menghubungi lewat wa.
Izin bertanya ka, sy punya model keseimbangan pasar dan inggin memprediksi return apakh kita neggunakan Arima hanya Y nya saja pak datanya untuk mendapatkan MAPE, MAD, MSE, etc, dan apakah tidak terjadi spurious regression kah ka, makasih.
Guna menghindarinya, time series analysis juga punya goodness of fit. Terima kasih
Halo,
saya ingin bertanya, saya ingin meramalkan data Water Balanced (Excess/Deficit) 2010 s/d 2020, datanya sendiri untuk excess datanya (+) deficit (-) dan terdapat data 0, apakah bisa dilakukan peramalan?
kemudian data diambil per bulan dan diduga data musiman dari grafik datanya, apakah harus dilakukan smua model dibawah
1) Model Linear; 2) Model Quadratic; 3) Model Exponential Growth; 4) Model S-Curve (PearlReed Logistic); 5) Model Moving Average; 6) Model Single Exponential Smoothing; 7) Model Double Exponential Smoothing; 8) Metode Winter; 9) Model ARIMA.; 10) SARIMA
atau langsung di tentukan menggunakan SARIMA?
Terimakasih
jawabnya bisa. jika ini penelitian, silahkan gunakan semua dan bandingkan model mana yang terbaik. tapi jika ini untuk kebutuhan operasional, silahkan langsung gunakan SARIMA. terima kasih
Pak, mau tanya. Saya sementara mengerjakan tugas akhir saya. Saya mempunyai data harga beras di indonesia tahun 2015-2019 dan saya telah melakukan peramalan untuk 12 perioder selanjutnya menggunakan metode vector autoregressive time series multivariat. Tetapi hasil peramalan yang saya dapatkan dari setiap periode sama, misalnya periode 1 9867 begitu juga sampai dengan periode ke 12 9867. Dan saya mendapatnya grafik dari hasil peramalan yang konstan (lurus). Bagaimana solusinya pak? Makasih pak
Semua itu bisa dipahami saat anda melihat rumus dari autoregressive itu sendiri. Yakni nilai peramalan ditentukan berdasarkan nilai terdahulunya atau periode sebelumnya. Katakanlah yt = a+byt-1 + cyt-2 … +Error.
Jika rumus seperti itu besar kemungkinan anda akan menjumpai peramalan atau forecasting dalam bentuk garis lurus. Apalagi jika datanya tidak stasioner.
Solusinya pastikan data anda stasioner. Atau gabungkan metodenya dengan moving average. Terima kasih
bagaimana penentuan ordo nya ya? apa sembarang tentuin saja?
ordo ditentukan dari berapa panjang siklus musiman di grafik trend Sarima.
Pak, apakah ada dasar atau teori pernyataan dari buku atau jurnal yang menyatakan bahwa data time series bisa digunakan dan di regresi apabila datanya 10 tahun saja?
saya jawab di video ini ya..terima kasih
https://youtu.be/tYTxkP3heaE
Assalamualaikum Pak. Agung. Ijin bertanya nggeh pak. Untuk acuan nilai errornya apakah cukup menggunakan 1 acuan saja (misal MAPE saja)?. Ataukah harus menggunakan lebih dari 1 acuan (misal MAPE, MAD dan MSD)?.
Misalkan MAPE, MAD dan MSD digunakan secara bersama-sama sebagai acuan, yang lebih didahulukan/diprioritaskan nilainya yang mana dulu nggeh Pak?.
Karena kemarin saya membandingkan 2 model trend analisis dengan kuadratik dan linier. Untuk MAPE & MADnya memang lebih kecil model quadratic, namun nilai MSDnya lebih kecil yang linier.
https://youtu.be/hHfQaOGsm9o
Sudah saya jelaskan divideo ini ya..
Selamat Pagi Pak. Agung.
Mohon maaf telah mengganggu waktu Bapak.
Ijin bertanya Pak, untuk nilai MAPE, MAD dan MSD yang lebih diprioritaskan yang mana dulu Pak?.
Karena kemarin saya melakukan analisis trend dengan model linear & kuadratik.
Untuk MAPE dan MADnya memang lebih kecil model kuadratik, tetapi untuk MADnya lebih kecil yang model linier. Bagaimana Pak?. Mohon arahannya.
Terima kasih.
https://youtu.be/hHfQaOGsm9o
Sudah saya jelaskan divideo ini ya..
Izin bertanya pak. Saya mahasiswa tingkat akhir yang sedang mengerjakan Tugas Akhir “Optimasi Pengadaan Tandan Buah Segar (TBS) di Perkebunan Kelapa Sawit”. Sebelumnya, saya ingin meramalkan TBS yang masuk setiap hari ke pabrik tahun 2021 menggunakan data harian (365 hari) tahun 2020 (Jan -Des) menggunakan metode ARIMA. Saya ingin bertanya pak, apabila dalam data harian TBS masuk tahun 2020 banyak yang bernilai 0. Apakah ketika ingin menganalisis pola data TBS masuk, data yang bernilai 0 itu dimasukkan saja ke dalam plot data atau yang ada nilai nya saja pak yang dimasukkan? Terimakasih pak
Dalam time series, nilai 0 sangat membahayakan. Karna nanti hasil error yang terjadi sangat besar.
Jadi untuk mengantisipasinya gunakan moving average. Misal yang bernilai nol adalah data ke n, maka rata ratakan nilai n+1 dan n-1.
Terima kasih
Maaf pak apabila saya salah paham. Berarti maksud bapak saya ganti metode peramalan menjadi moving average ya pak? Tidak pakai ARIMA lagi ?
Bukan..ini kan kita hanya membahas data yang kosong tadi mbak. Klo forecast silahkan saja menggunakan arima. Tapi klo dipaksa dimasukkan nol, nanti akan sulit mencari model yang sesuai. Maka untuk mengisi nilai 0 ini digunakan rata rata data sebelum dan sesudah.
siang pak ijin bertanya jika saya memiliki data time series dari 2011-2015 kira kira saya dapat meramalkan untuk berapa tahun kedepan ya pak?
selamat pagi tami… kuncinya adalah memperoleh satu siklus dari data yang ingin kita ramalkan. dan tentunya ini akan berbeda beda. lebih lengkap silahkan simak video channel youtube saya yang berjudul TJ Budi #1.
Pak, teman saya lagi meneliti data time series kurun waktu dari 2005-2019. Supaya kenapa pak ?
Pak, jika saya ingin melakukan peramalan jumlah penduduk menggunakan data tahunan sebanyak 18 data saja apa cukup? Terima kasih
Sangat kurang sepertinyanya.. data penduduk pun sebenarnya itu adalah proyeksi. Sensus penduduk tidak tiap tahun.
Mas Agung, saat ini keadaan sedang covid-19, dampak dari covid-19 kredit semakin berkurang, namun ada beberapa sektor kredit yang meningkat. Bagaimana / metode apa yang bisa untuk menganalisis sektor kredit mana yang punya peluang bagus?
karena covid ada di awal januari 2020, maka saya hanya mengambil data dari januari 2020 sampai mar 2020. Kalau saya mengambil data 2 tahun terakhir maka data yang 2020 menjadi outlier. Data yang saya miliki data time series
Iya..itu yang sudah saya bahas di artikel terbaru tentang time series. Maka pada kondisi ini time series belum bisa digunakan. Baiknya tetap mengikuti berita pertumbuham ekonomi di berbagai sektor yang dikeluarkan oleh BPS atau instansi lainnya baik dalam maupun luar negeri. Informasi juga bisa diperoleh dari fenomena banyak pengusaha besar dibidang makanan yang merugi. Ada juga yang sedang meroket seperti pertanian atau sektor pangan. Terima kasih
Selamat pagi Pak Budi,
Saya Hendri,
Saya mau menanyakan, ketika sudah diperoleh peramalan dan nilainya untuk selanjutnya bagaimana caranya memadukan dengan safety stok/stok ideal pak,
Apakah ada thread bapak yang membahas ini?
Matur nuwun pak
Komentar yang menarik. Dalam waktu dekat mudah mudahan bisa saya tuliskan artikel yang membahas ini ya mas… Terima kasih
alhamdulillah saya sudah membahas sedikit di artikel https://agungbudisantoso.com/pentingnya-peramalan-time-series-dalam-bisnis/
dan juga youtubenya :
https://www.youtube.com/watch?v=oXjvWjuEjhk&feature=youtu.be
jangan lupa subscribenya ya pak… rencana saya akan bahas secara detil di video selanjutnya. terima kasih
Selamat siang
Jika saya hanya memiliki data masa lalu 12 bulan. Apakah bisa/cukup untuk melakukan peramalan 3 bulan kedepan?
bisa
Jika memang bisa alasannya kenapa ya? Apakah ada literatur yang membahas mengenai minimal data untuk melakukan peramalan?
Terimakasih
sepertinya tidak akan ditemukan literatur tentang berapa minimal data time series. karena setiap kasus akan berbeda. contoh: forecasting produksi komoditas pertanian tentu akan berbeda dengan forecast saham, juga pasti akan berbeda kasusnya dengan forecast curah hujan. setiap kasus punya siklus masing masing.
sebelumnya saya jawab bisa, karena dalam setahun itu setidaknya bisa menggambarkan siklus musiman secara utuh, meskipun akan kurang menjelaskan trend. terima kasih
Selamat sore
Kalo saya mau forecast inflasi 5 tahun ke depan, apakah bisa menggunakan aplikasi minitab atau ada aplikasi lain?
Terima kasih
Bisa pakai minitab juga bisa pakai software statistik lainnya. Silahkan pilih mana yang prefer aja. Semuanya sama. Terima kasih
Aslm Mas Budi..
Mau bertanya, saya baca terdapat berbagai jenis model/metode peramalan hubungan deret waktu. Diantaranya adalah: 1) Model Linear; 2) Model Quadratic; 3) Model Exponential Growth; 4) Model S-Curve (PearlReed Logistic); 5) Model Moving Average; 6) Model Single Exponential Smoothing; 7) Model Double Exponential Smoothing; 8) Metode Winter; 9) Model ARIMA.
Yg saya pahami:
Aplikasi miniTab hanya untuk model 1, 2, 3, 4.
Aplikasi ARIMA untuk model Arima.
1. Apakah perlu membandingkan 1-9 model tersebut, untuk dicari model terbaik (MAPE, MAD, MSD terkecil)
2. Apakah ada aplikasi yg bisa untuk semua model tersebut?
Jika tidak ada, apa aplikasi untuk model 5-8?
Terimakasih atas bantuannya
Wa alaikim salam.
1. Ada baiknya semua dicoba untuk meyakinkan mana model yang sesuai. Tapi, bagi orang yang sudah menggunakan analisis time series biasanya sudah bisa menduga model mana yang akan dicoba krna diduga mendekati. Hal ini dikarenakan dia mengetahui sifat grafik dan pola forecast yang dibutuhkan.
3. Semua jenis time series tersebut sudah ada di minitab versi 17. Menu stat – time series.
Terima kasih
Assalamualaikum mas Budi,
Saya memiliki data penjualan harian toko selama 1 tahun lebih, 373 hari. apakah harus buat per bulan lalu dilakukan kalkulasi atau langsung saja dipakai data per hari nya untuk kalkulasi?…
terimakasih
wassalam
wa alaikum salam mas fabr, klo secara scientificnya bisa dua duanya, bisa harian ataupun bulanan. hanya saja ada pertimbangan kenapa kita mengkalkulasikan dulu ke bulan. jika kita mengkalkulasikan dulu terhadap bulan, kita lebih mudh menentukan bulan mana penjualan turun dan bulan mana saat peak season dari grafik time series yang ada. jika tetap menggunakan hari pun tidak apa apa, hanya saja kita akan kesulitan karena periodenya akan panjang sampai 365 hari.
ditambah lagi, dengan mengkalkulasikan ke bulan kita bisa dengan mudah mengaitkan momen dengan kejadian naik turunnya penjualan. misalnya adanya lebaran sehingga terjadi kenaikan penjualan, sehingga kita bisa mengatur berapa stok untuk menghadapi lebaran tahun depan. atau contoh lainnya seperti libur sekolah, natal dll. hal ini akan lebih mudah dievaluasi dengan mengkalkulasikan dulu ke bulan. Terima kasih
Terimakasih Mas Budi..
Sukses selalu
Mas Agung,jika datanya periode bulanan apakah prediktornya selalu bulan atau ada teknik lainnya?
Yang terbaik memang bulanan, sesuai datanya. Tapi bisa juga dijadikan triwulan, caturwulan, dsb. Namun itu akan mengurangi jumlah data karna merata – ratakan data sesuai periodenya. Terima kasih
Assalamualaikum
Maaf pak izin bertanya. Saya telah mencoba meramalkan data time series untuk 12 periode kedepan (Februari 2018-Januari 219). Saya menggunakan data impor dari Januari 2009-Januari 2018. Namun, hasil yang saya peroleh angka peramalannya sama untuk 12 periode tersebut. Misal pada periode pertama ramalannya sebesar 13567.08, kemudian hasil ramalan pada periode kedua s.d. periode 12 hasilnya akan sama dengan hasil ramalan periode I. Apakah ada kemungkinan suatu peramalan data time series akan menghasilkan nilai ramalan yang sama untuk setiap periodenya? Terima kasih.
wa alaikum salam mbak… artinya model yang dihasilkan dalam peramalan tersebut bersifat konstan atau linear. coba diulang forecastnya dengan cara meramalkan satu periode e satu periode secara berurutan. misal periode 1 hasilnya a, maka kita masukkan a untuk periode tersebut dan menghitung periode 2. terima kasih
Assalamualikum
Selamat pagi Pak Agung.Saya makasiswa smt akhir pak.
Dari kutipan bapak mengatakan kalah “Pola trend biasanya terlihat dari grafik yang naik atau turun dalam waktu yang panjang (10 tahun, 20 tahun, 15 tahun, 5 tahun)”. Nah, pertanyaan saya apabila saya memiliki data 3 th kmd saya ingin menghitung trend untuk 3 th mendatang itu bisa tidak ya pak?. kemudian dari kutipan bapak tersebut diatas jumlah tahun dlm pengambilan trend terdapat pd buku yg berjudul apa pak, halaman berapa, tahun berapa dan karangan siapa ya pak? soalnya saya disuruh dosen saya untuk mencari dasar teori mengenai pengambilan tahun tersebut namun saya belum menemukan. barangkali bapak bisa membantu saya.. terimakasih pak
Wa alaikum salam,
Sebenarnya sy sedikit enggan klo menjawab pertanyaan seperti ini. Tandanya mahasiswa kurang semangat melakukan literasi bahkan pertanyaan sedikit menyudutkan karena saya harus memberikan sampai tingkat halaman berapa..
Buku wiley ataupun buku yang tertulis pengarang indonesia menyatakan bahwa peramalan ditentukan oleh data saat ini atau data sebelumnya. Tapi akan sangat jarang dijumpai harus 3 tahun, 4 tahun, 10 tahun dll.
Karena ini tergantung konteks penelitian. Misalnya.. artikel jurnal yang saya tulis tentang iklim
http://www.ejurnal.litbang.pertanian.go.id/index.php/jpptp/article/view/3496
Tentu harus menggunakan data puluhan tahun, tidak mungkin hanya menggunakan data 3 tahun karna berbicara iklim.
Berbeda halnya jika membahas saham atau harga bulanan. Mungkin tdk perlu sampai harus 5 tahun.
Kuncinya bagaimana data tersebut menggambarkan siklus lengkap satu periode. Mulai dari dia meningkat kemudian turun dan seperti kembali ketitik normal dengan gambaran seasonal yang terulang.
Karena hal itu pula saya tdk bisa menjawab apakah data yang mbk miliki 3 tahun bisa digunakan atau tidak, krna saya tdk tau kita membicarakan topik apa.
Diskusikan ini dengan dosen anda apakah data yang dimiliki cukup u meramalkan kedepan. Mengenai literatur, saya rasa semua literatur menyatakan hal itu, bahwa peramalan ditentukan dari data sebelumnya.
Lalu apakah bisa data 3 tahun meramalkan 3 tahun? Diluar konteks topik penelitian, saya berargumen bahwa ini tidak bisa. Karena rumus time series yang dikeluarkan spss minitab atau lainnya biasanya garis lurus. Tdk mencerminkan pola seasonalnya. Meramalkan sih boleh saja, tapi apa valid?
Terima kasih
Kalau saya hanya mmiliki data 12 bulan dan ingin meramalkan 5 tahun lg apakah bsa mas? Atau hnya bsa diramal 1 th kdepan saja baru stlah tau actualnya, diramalkan lg utk bbrp tahun kdpan? Terima kasih 🙂
Jika datanya bulanan, lebih baik prediksinya juga bulanan ya bu.. agar bisa memprediksi 1 tahun kedepan, lebih baik datanya lebih dari 2 tahun (data bulanan). Hal ini agar pola trend atau musiman pada tahun tersebut dapat dipola kan.terima kasih
Pagi mas. Mau tanya. Sy ingin memprediksi tren kunjungan di suatu destinasi wisata. Tapi sy hanya punya data kunjungan per bulan selama 2 th terakhir. Bisa ga membuat tren kunjungan selama bbrp tahun ke depan dgn data tsb? Terima kasih
Selamat pagi mas budi. Dalam pandangan saya, data bulanan dalam 2 tahun sudah cukup untuk membuat forecast. 2 tahun berarti memberi gambaran 2 siklus pengunjung (satu siklus, satu tahun). Data musiman juga bisa tercover (misalnya selama libur panjang, dsb).
Terima kasih
yang dimaksud data 7 bulan adalah data dari awal operasi yaitu bulan september 2021 – april 2022. kalau tidak bisa meramalkan dengan data perbulan (sep, ok, nov-april), apakah bisa menggunakan data perharinya saja. dan saran untuk metodenya kalau tidak bisa trend, apakah ada saran pak? terimakasih banyak pak
Sangat membantu
terima kasih atas komentarnya. Sangat terbuka jika ada yng mau ditanyakan setelah membaca penjelasan artikel ini atau artikel lainnya di blog ini..